
Optical FlowPGA Final Report
Maggie Shi

Department of EECS
MIT

manxishi@mit.edu

Christy Li
Department of EECS

MIT
ckl@mit.edu

Abstract—We present Optical FlowPGA, an FPGA-based mo-
tion tracking system for real-time detection and visualization of
moving feature points in video streams with minimal latency.
The system implements Harris corner detection in hardware
to continuously identify and track salient feature points on
moving objects across consecutive frames. By computing spatial
and temporal gradients at these corner locations, the system
also provides all necessary intermediate computations for op-
tical flow estimation to enable real-time visualization of feature
point trajectories overlaid on the original video feed. While a
Lucas–Kanade optical flow module was developed and validated
against a Python reference implementation during testing, it
was not integrated into the final system; however, the existing
architecture includes all downstream visualization capabilities
and intermediate gradient computations necessary for future
integration of Lucas–Kanade or other optical flow algorithms.
By exploiting the FPGA’s inherent parallelism and a low-
latency pipelined architecture, Optical FlowPGA targets real-
time computer vision applications such as autonomous driving,
robotics, and motion detection systems.

I. OVERVIEW

The primary goal of Optical FlowPGA is to achieve real-
time processing of camera footage while maintaining accurate
tracking of salient feature points on moving objects. The
system processes video in a continuous loop: capturing frames,
computing spatial gradients via Sobel convolution, computing
temporal gradients through frame differencing with DRAM-
stored previous frames, accumulating gradient products over
16×16 windows, identifying corner features through Harris
corner detection, and outputting visualizations that track mul-
tiple feature points overlaid on the original video feed.

Optical FlowPGA employs a sparse feature tracking ap-
proach that focuses computational resources on corners, i.e. the
most informative and trackable points in the image, identified
through the Harris corner detection algorithm [1]–[3]. The
system first computes spatial gradients (Ix, Iy) using 3×3
Sobel filters applied to incoming camera luminance data,
then computes temporal gradients (It) by subtracting synchro-
nized current and previous frame pixels retrieved from DDR3
DRAM. A multiply-accumulate (MAC) module with a 16×16
cache processes these gradients to compute windowed sums
(
∑

I2x,
∑

I2y ,
∑

IxIy ,
∑

IxIt,
∑

IyIt) over 16×16 pixel
regions. These windowed sums serve dual purposes: they feed
into the Harris corner detector to identify the top 10 corner
features that are spatially well-separated, and they provide the
exact intermediate values required for Lucas–Kanade optical
flow computation.

This sparse approach exploits the FPGA’s parallel process-
ing architecture through pipelined modules that simultaneously
compute gradients, accumulate products, and identify track-
able features, improving efficiency while maintaining tracking
accuracy for moving objects. A Lucas–Kanade optical flow
module was implemented and validated against a Python
reference implementation but was not incorporated into the
final system; however, the existing infrastructure computes all
necessary gradient products and maintains the data structures
required for future optical flow integration. A top level diagram
of the complete system is shown in Fig. 2.

Fig. 1. Continuous streaming detection of the top-k most spatially and
temporally salient feature points in a live video feed.

II. COMPUTATION

A. Spatial Gradients via Convolution

Similar to our convolution lab, this module takes in 3
vertically stacked pixels, specifically their luminance values.
These pixels come in streamed from the camera input data
path. Then it constructs 3x3 windows and computes Sobel
X and Sobel Y. Every pixel produces data valid, h count,
v count, and Ix, Iy out for the next MAC module to use. One
issue we ran across was that reusing our exact implementation
from the lab caused the convolution to be the longest path and
our build to violate timing. We found that the bottleneck was
a long adder chain of 9 sequential additions. We overcame
this challenge by splitting up the additions into 3 groups of 3
and then summing the groups, creating a much more balanced

Fig. 2. Top level block diagram of Optical FlowPGA.

adder tree and allowing us to comfortably meet timing without
using any additional pipeline stages.

B. Temporal Gradients via Subtraction

In order to detect motion in specific feature points, we
compute It the time gradient as current pixel - previous pixel
of two consecutive frames. The current pixel is streamed in
from the camera data path and the previous pixel is pulled
from DRAM. The same current pixels were previously used in
the convolution module. These live camera and DRAM pixels
need to be synchronized at the same h count and v count. In
detail, the two distinct paths to computing temporal gradient
are:

1) Camera → pixel reconstruct → RGB to luminance →
downsample → CDC → 3-line buffer

2) Request → traffic generator → DDR3 DRAM fifo →
CDC → unstacker

Some key signals are: When does DRAM start reading?
cam frame start (camera frame begins). When does prefill
complete? After dram prev valid is high for 10 cycles. When
does MAC start consuming? dram read enable = lb valid and
dram prefill done. The prefill means that DRAM starts read
requests at the camera frame start, and when the FIFO is full
for 10 cycles, this means the DRAM data is ready to read.
By this time, the line buffer holding camera data has been
filled as well, and upon the valid of both data from DRAM
and the line buffer, they are ready to be used for a temporal
gradient. This is just a simple subtraction of two pixels, but
the challenge was aligning them.

C. MAC

The multiply accumulate module holds a 16x16 cache,
which is made up of data from 16 line buffers. One thing
to note is this is not exactly a ”cache” in that the data is not
reused between computations, since this is a windowed multi-
ply where every pixel in the window gets the same computed
value. The values stored in the cache are the concatenated
Ix, Iy, It streamed in from the previous convolution block.
The purpose of this module is to compute

∑
i I

2
x,

∑
i I

2
y ,∑

i IxIy ,
∑

i IxIt, and
∑

i IyIt, which are values summed
over the 16x16 window. These outputs are valid at the bottom
left corner of a window, since the entire window has the same
sum. These outputs are passed to both the corner detector
module and the optical flow module.

D. Corner Detection

The corner detection module implements a streaming top-
k with an absolute distance check in the x and y directions,
to give multiple corners that are not too close together. This
module runs on initialization and reset, since we only need
to find corners once at the beginning. It computes the Harris
corner response

R =
∑

I2x
∑

I2y−
(∑

IxIy

)2

−k
(∑

I2x +
∑

I2y

)2

(1)

with streamed sums from the MAC module and keeps the k
windows with the largest response. The output of this module
is a length k buffer with h_count and v_count coordinates
of the top left of the corner windows. This module is meant
as an approximate means to find corners, but it does not
necessarily have to find the exact k corners with the largest

response. Sometimes, because of the motion threshold, it may
not find up to k moving corners, in which case it will output
0, 0 for the coordinates of this corner. A potentially more
accurate version of corner detection was the Shi-Tomasi corner
detector, but because the computed corner response required
a square-root, we decided on this corner response calculation
isntead. In our implementation, we used k = 3 but this module
should generalize.

E. Optical Flow

The optical flow module implements the Lucas-Kanade
algorithm to compute motion vectors (u, v) representing pixel
displacement between consecutive frames. The Lucas-Kanade
method assumes brightness constancy and small motion be-
tween frames, leading to the optical flow constraint equation
Ixu + Iyv + It = 0 [4]. Since this single equation has
two unknowns, we aggregate the constraint over a local
neighborhood (our 16×16 window) and solve the system in
a least-squares sense.

Summing over all pixels in the window, we obtain the
system: [∑

i I
2
x

∑
i IxIy∑

i IxIy
∑

i I
2
y

] [
u
v

]
= −

[∑
i IxIt∑
i IyIt

]
(2)

The five summations on the left and right sides are provided
directly from the multiply-and-accumulate module described
in Section II-C. To solve for the motion vector, we invert the
2×2 matrix on the left hand side. The solution is given by:

u =
(
∑

i I
2
y)(

∑
i IxIt)− (

∑
i IxIy)(

∑
i IyIt)∑

i I
2
x ·

∑
i I

2
y − (

∑
i IxIy)

2
(3)

v =
(
∑

i I
2
x)(

∑
i IyIt)− (

∑
i IxIy)(

∑
i IxIt)∑

i I
2
x ·

∑
i I

2
y − (

∑
i IxIy)

2
(4)

The optical flow module computes the numerators and
denominators through multiplication and accumulation opera-
tions on the input terms, performing all arithmetic using signed
fixed-point representation to maintain precision throughout the
computation pipeline. Division is implemented using a custom
double-pipelined divider module designed to handle 48-bit
signed numbers, which was necessary to maintain sufficient
fixed-point accuracy for the motion vector calculations. The
complete module is pipelined to 28 stages, with 24 of these
stages dedicated to the custom divider itself, enabling high-
throughput operations.

Although this optical flow module was not integrated into
the final system due to time constraints, it was thoroughly
tested and validated against a Python reference implementation
of the Lucas-Kanade algorithm. The hardware implementation
matched the Python results to high precision across various
test sequences, as demonstrated in 3. The module remains
fully functional and can be readily integrated into the existing
system architecture, as all required input values (

∑
I2x,

∑
I2y ,∑

IxIy ,
∑

IxIt,
∑

IyIt) are already computed and available
from the MAC module.

III. MEMORY

The DRAM uses a triple-buffered rotation to hold downsam-
pled 640x360 luminance frames so that one buffer is written by
the camera stream while two independent read paths fetch the
previous frame. One is aligned to HDMI vsync and the other
is aligned to camera vsync, without risking overwrite. On each
detected tlast, write_frame_index advances modulo 3
to select the next buffer base address, giving a guard buffer that
prevents frame t-1 from being overwritten by t+1 if processing
or display ever slips past a single vsync interval. The traffic
generator round robins through 3 operations, 2 reads (frame
t-1 for display and frame t-1 for computation) and 1 write
(frame t). The reason we have two read paths is one goes to
HDMI and uses HDMI’s vsync, while the other is synced with
the camera’s vsync, in order to be aligned with the pixel out of
the line buffer that the camera fed into. At any moment, in the
traffic generator, the display and calculation path have pointers
that point to and increment different read addresses. The
design assumes the full downsampling occurs before DRAM
so all stored frames are 640x360, and the available bandwidth
plus FIFO depth are sufficient to service both read streams
and the write stream within each frame period; otherwise the
guard buffer absorbs timing slips. Proper operation depends on
robust tlast handling to rotate indices correctly, per-frame
pointer initialization for both read domains, and arbitration that
prevents the HDMI and camera synced reads from overrunning
or diverging within the selected frame.

IV. VISUALIZATION

The first visualization we implemented was simply detecting
and plotting the computed moving corners continuously each
frame, resulting in a visualization like the one in 1. When
all objects in a scene are stationary, i.e. have a small time
gradient below a motion threshold, no corners are plotted no
matter the magnitude of their spatial gradients. When there is
motion and a significant spatial gradient in luminance, corners
are detected and plotted.

The second visualization was a trail buffer module plots the
positions of each of the k feature points over frames, using
a distinct color for each point and maintaining continuity of
point colors across all frames, implemented as an FSM. It
accomplishes this by keeping a “trail buffer” frame in a dual-
port BRAM. The trail buffer is the size of a video frame and
stores “pixels” with values 0 through k, where each a value 1
through k represents the ID of the feature point that was last
located at that pixel and 0 represents no feature point having
ever been located at that pixel.

At initialization and after the corner detector has determined
the features to track, the module will assign a unique ID from 1
through k to each feature point and write their ID into the trail
buffer at their location. For each subsequent frame, it takes
as input the current and predicted locations of a particular
feature point returned by the optical flow module. Port A of
the BRAM is responsible for updating the trails by performing
a sequential read and then write to the trail buffer to retrieve
the ID of the point at the current location and write the same

Fig. 3. We validated the hardware optical flow implementation in simulation against a Python reference and found that it matched to high accuracy in the
features it discovers and the motion vectors it computes.

ID to the predicted location. This functionality is implemented
with a three-stage pipeline, since a read from BRAM take two
stages while a write take one.

Port B is used for HDMI readout from the trail buffer at a
given address. The resulting trail pixel from this read (some
value from 0 to k) is passed to a video mux along with the
current camera pixel. If the trail pixel is 0, the video mux
returns the camera pixel. Otherwise, it returns a distinct color
based on the trail pixel value. The muxed pixel is then fed to
the HDMI pipeline for visualization, resulting in the desired
effect of distinctly colored motion trails overlaid with camera
footage.

An example of the visualization is shown in Fig. 4 using
real-time detected moving corners but synthetic motion data
(continuous motion down and to the right). We believe this
visualization scheme lends itself to being easily compatible
with future integration of Lucas-Kanade or other optical flow
algorithms.

V. TOP LEVEL INTEGRATION

The top level ties the pipeline from camera input, to DRAM
storage, to computation, and HDMI visualization. Data from
the camera and data from DRAM come together into the
compute path and drives mac_wrapper. Corner results are
latched in the top level and are either 1. converted into
initialization coordinates that either seed the trail buffer or
2. simply overlayed on HDMI in continous corner detection
mode. Switch 0 toggles between option 1 and 2. For both,
corner detection is initialized on a button press. For display,
the DRAM read output is upsampled 2x2 locally, muxed
with the trail overlay, and augmented with corner markers;
then video sig gen provides HDMI timing and TMDS en-
coders/serializers drive the differential HDMI outputs.

VI. FINAL RESULT

Due to time constraints, we did not incorporate optical flow
into the top level dataflow. Instead, we opted for continuous
moving corner detection. This means that on every frame,
new moving corners will be detected. The detected corners

are shown on HDMI by overlaying green dots on the live
video. Additionally, we have another version of the visual-
ization which is a singular moving corner detection upon
startup and trail buffers drawn starting from those corners.
For this trail buffer, as described in the section above, we
have fake generated next pixel locations, which would have
been replaced by calculated predicted next locations had we
incorporated optical flow. We found that tracking a light on
a dark background worked the best because of the contrast.
Additionally, tracking our hand moving also worked well.

In conclusion, we successfully implemented a real-time
hardware-accelerated feature tracking system that identifies
and visualizes salient corner features on moving objects with
minimal latency. While the system does not currently predict
corner motion vectors, it establishes a complete computational
pipeline, from gradient computation through corner detection
and visualization, that provides all intermediate values neces-
sary for future optical flow integration. The modular architec-
ture and validated Lucas-Kanade implementation demonstrate
that extending the system to full motion vector prediction
is achievable, requiring only integration of the existing op-
tical flow module into the dataflow pipeline. The system
successfully demonstrates real-time sparse feature tracking
capabilities suitable for computer vision applications requiring
low-latency object motion detection.

VII. EVALUATION

A. Timing

In post route timing, we find a WNS of 0.098 ns, with the
longest path in high definition frame buffer. After pipelining
most modules, we successfully met timing.

B. Resources

Looking at post_place_util.rpt, we see 17 DSP
blocks used. Our project is not BRAM heavy, since we use
DRAM for frame buffer storage. A couple line buffers from
convolution and MAC reside in BRAM and a frame buffer
for trail visualization is also in BRAM. As calculated in our
presentation, this totals to 135 KB of BRAM.

Fig. 4. Single-frame corner detection on a button press that launches a motion trail visualization, currently implemented with synthetic data.

C. Checklist

We successfully accomplished our commitments, which
were to have well-pipelined modules that pass local test-
benches and working corner detection and trail drawing on
moving objects. The build meets timing, and we consistently
find moving corners. While we were able to implement optical
flow and testbench it, we did not have time to integrate this
module into our top level. Where it should have gone was after
the MAC module and before the trail buffer module, where it
should have fed in updated coordinates (instead of manually
incremented coordinates for the sake of visualization). Thus,
we have a solid chunk of our goals completed. Our stretch
goal involved iterative refinement, which is just a figment of
our dreams now.

VIII. IMPLEMENTATION INSIGHTS

We found debug LEDs very helpful throughout the process.
For example, some signals that helped us debug were: if
DRAM was feeding valid data, or if MAC outputs were valid,
if corners were latched in top level. Synchronizing modules
in top level was nontrivial, even when we had working, well-
testbenched individual modules. We also spent a considerable
amount of time thinking and planning out system features that
we did not end up having time to implement, so perhaps for
future work, we will spread out our thinking/planning and start
with the most basic implementations.

IX. CODE REPOSITORY

Our GitHub repository is available at
https://github.mit.edu/6205F25/fa25-6205-team66

X. INDIVIDUAL CONTRIBUTIONS

Maggie implemented the DRAM memory subsystem, con-
volution, and MAC. Christy implemented the HDMI visualiza-
tion subsystem, trail buffers, and optical flow. We collaborated
on implementing corner detection, pipelining completed mod-
ules, and connecting modules in top level.

XI. ACKNOWLEDGMENT

We thank Professor Joe Steinmeyer, Kiran Vuksanaj, and
the 6.205 teaching staff for their advice and assistance on
completing this project.

REFERENCES

[1] OpenCV Documentation, “Optical Flow.” [Online]. Available:
https://docs.opencv.org/3.4/d4/dee/tutorial optical flow.html

[2] OpenCV Documentation, “Harris Corner Detection.” [Online]. Avail-
able: https://docs.opencv.org/4.x/dc/d0d/tutorial py features harris.html

[3] viso.ai, “Optical Flow.” [Online]. Available: https://viso.ai/deep-
learning/optical-flow/

[4] B. Chiang, “Optical flow,” Stanford University CS231A
Course Notes, Stanford, CA, USA. [Online]. Available:
https://web.stanford.edu/class/cs231a/course notes/09-optical-flow.pdf

